Öss Hazırlık,Ders Notları,Türkçe,Matmatik,Fizik,Test
Would you like to react to this message? Create an account in a few clicks or log in to continue.

Öss Hazırlık,Ders Notları,Türkçe,Matmatik,Fizik,Test


 
AnasayfaAnasayfa  Latest imagesLatest images  AramaArama  Kayıt OlKayıt Ol  Giriş yap  
En iyi yollayıcılar
TıN
POLİNOMLAR Vote_lcapPOLİNOMLAR Voting_barPOLİNOMLAR Vote_rcap 
мouяŃ
POLİNOMLAR Vote_lcapPOLİNOMLAR Voting_barPOLİNOMLAR Vote_rcap 
eylüL.
POLİNOMLAR Vote_lcapPOLİNOMLAR Voting_barPOLİNOMLAR Vote_rcap 
Hayata İsyan Son Konular
Konu Yazan GöndermeTarihi
Perş. Ağus. 04, 2011 6:07 am
Perş. Ağus. 04, 2011 3:47 am
Perş. Ağus. 04, 2011 2:39 am
Perş. Ağus. 04, 2011 1:25 am
Çarş. Ağus. 03, 2011 11:13 am
Salı Ağus. 02, 2011 12:00 am
Paz Tem. 31, 2011 5:25 am
C.tesi Tem. 30, 2011 9:30 pm
C.tesi Tem. 30, 2011 8:38 pm

 

 POLİNOMLAR

Aşağa gitmek 
YazarMesaj
TıN
Admin
TıN


Mesaj Sayısı : 171
Yaş : 30
Kayıt tarihi : 21/07/08

POLİNOMLAR Empty
MesajKonu: POLİNOMLAR   POLİNOMLAR EmptySalı Mayıs 12, 2009 12:41 pm

POLİNOMLAR


A. TANIM


n bir doğal sayı ve a0, a1, a2, ... , an – 1, an birer gerçel sayı olmak üzere,
P(x) = a0 + a1x + a2x2 + ... + an – 1xn – 1+anxn


biçimindeki ifadelere x değişkenine bağlı, gerçel (reel) katsayılı n. dereceden polinom (çok terimli) denir.



B. TEMEL KAVRAMLAR
P(x) = a0 + a1x + a2x2 + ... + an – 1xn – 1+anxn


olmak üzere,

Ü a0, a1, a2, ... , an–1, an in her birine polinomun terimlerinin katsayıları denir.

Ü a0, a1x, a2x2, ... , an–1xn – 1, anxn in her birine polinomun terimleri denir.

Ü Polinomun terimlerinden biri olan a2x2 teriminde x in kuvveti olan 2 ye bu terimin derecesi denir.

Ü Polinomu oluşturan terimler içerisinde derecesi en büyük olan terimin katsayısına polinomun baş katsayısı, bu terimin derecesine de polinomun derecesi denir ve

der [p(x)] ile gösterilir.

Ü Değişkene bağlı olmayan terime polinomun sabit terimi denir.

Ü a0 = a1 = a2 = ... = an = an–1 = 0 ise, P(x) polinomuna sıfır polinomu denir. Sıfır polinomunun derecesi tanımsızdır.

Ü a0 ¹ 0 ve a1 = a2 = a3 = ... an – 1 = an = 0 ise, P(x) polinomuna sabit polinom denir. Sabit polinomunun derecesi sıfırdır.



Her polinom bir fonksiyondur. Fakat her fonksiyon polinom olmayabilir.

Buna göre, fonksiyonlarda yapılan işlemler polinomlarda da yapılır.




C. ÇOK DEĞİŞKENLİ POLİNOMLAR

P(x, y) = 3xy2 – 2x2y – x + 1

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun derecesi denir.



D. POLİNOMLARDA EŞİTLİK

Aynı dereceli en az iki polinomun eşit dereceli terimlerinin katsayıları birbirine eşit ise bu polinomlara eşit polinomlar denir.



Ü P(x) polinomunun katsayıları toplamı P(1) dir.

Ü P(x) polinomunda sabit terim P(0) dır.




Herhangi bir polinomda; kat sayılar toplamı bulunurken o polinomda değişkenler yerine 1 yazılır. Sabit terim bulunurken o polinomda değişkenler yerine 0 (sıfır) yazılır.

P(ax + b) polinomunun; kat sayıları toplamı

P(a + b) ve sabit terimi P(b) dir.




Ü P(x) polinomunun;

Çift dereceli terimlerinin kat sayıları toplamı: POLİNOMLAR Poli_kesir01



Tek dereceli terimlerinin kat sayıları toplamı: POLİNOMLAR Poli_kesir02





E. POLİNOMLARDA İŞLEMLER

1. Toplama ve Çıkarma

P(x) = anxn + an – 1xn – 1 + an – 2xn – 2 + ...

Q(x) = bnxn + bn – 1xn – 1 + bn – 2xn – 2 + ...

olmak üzere,



P(x) + Q(x) = (an + bn)xn + (an – 1 + bn–1)xn – 1 + ...

P(x) – Q(x) = (an – bn)xn + (an – 1 – bn–1)xn – 1 + ...

olur.



2. Çarpma

İki polinomun çarpımı, birisinin her bir teriminin diğerinin her bir terimi ile ayrı ayrı çarpımlarından elde edilen terimlerin toplamına eşittir.



3. Bölme

der [P(x)] ³ der [Q(x)] ve Q(x) ¹ 0 olmak üzere,


POLİNOMLAR Poli_sekil01


P(x) : Bölünen polinom

Q(x) : Bölen polinom

B(x) : Bölüm polinom

K(x) : Kalan polinomdur.



Ü P(x) = Q(x) . B(x) + K(x)

Ü der [K(x)] < der [Q(x)]

Ü K(x) = 0 ise, P(x) polinomu Q(x) polinomuna tam bölünür.

Ü der [P(x)] = der [Q(x)] + der [B(x)]



Polinomlarda bölme işlemi, sayılarda bölme işlemine benzer biçimde yapılır.

Bunun için;

1) Bölünen ve bölen polinomlar x in azalan kuvvetlerine göre sıralanır.

2) Bölünen polinom soldan ilk terimi, bölen polinomun ilk terimine bölünür.

3) Bulunan bu bölüm, bölen polinomun bütün terimleri ile çarpılarak, aynı dereceli terimler alt alta gelecek biçimde bölünen polinomun altına yazılır.

4) Bulunan sonuç, bölünen polinomdan çıkarılır. Fark polinomuna da aynı işlem uygulanır.

5) Yukarıdaki işlemlere, kalan polinomun derecesi bölen polinomun derecesinden küçük oluncaya kadar devam edilir.



F. KALAN POLİNOMUN BULUNMASI

Kalan polinomu, klasik bölme işlemiyle ya da aşağıdaki 3 yöntemden biri ile bulabiliriz.



1. Bölen Birinci Dereceden İse

Bir polinomun ax + b ile bölümünden kalanı bulmak için, polinomda değişken yerine POLİNOMLAR Poli_kesir03 yazılır.

• P(x) in x – b ile bölümünden kalan P(b) dir.

• P(mx + n) nin ax + b ile bölümünden kalan

POLİNOMLAR Poli_kesir04



2. Bölen Çarpanlara Ayrılıyorsa

Bölen çarpanlara ayrılıyorsa, her çarpan sıfıra eşitlenir. Bulunan kökler polinomda yazılarak kalan bulunur.

P(x) polinomunun a(x – b) . (x – c) ye bölümünden kalan mx + n ve bölüm polinom Q(x) ise,

P(x) = a(x – b) . (x – c) . Q(x) + mx + n olur.

P(b) = mb + n ... (1)

P(c) = mc + n ... (2)

(1) eşitliği ile (2) eşitliğinin ortak çözümünden m ve n bulunur.



Bölen polinomun derecesi n ise kalan polinomun derecesi en fazla (n – 1) dir.




3. Bölen Çarpanlarına Ayrılamıyorsa

Bölen çarpanlarına ayrılamıyorsa aşağıdaki 2 yöntem sırasıyla uygulanarak kalan polinom bulunur.

1) Bölen polinom sıfıra eşitlenerek en büyük dereceli değişkenin eşiti bulunur.

2) Bulunan ifade bölünen polinomda yazılır.

• P(x) polinomunun ax2 + bx + c ile bölümünden kalanı bulmak için P(x) polinomunda x2 yerine POLİNOMLAR Poli_kesir05 yazılır.



4. P(x) Polinomu (ax + b)n İle Tam Bölünüyorsa, (n Î N+, n > 1)


POLİNOMLAR Poli_kesir06

......................

......................

......................

POLİNOMLAR Poli_kesir07


(P'(x) : P(x) polinomunun 1. türevidir.)




P(x) = axn + bxm + d ise,

Pı(x) = a . nxn–1 + b . mxm–1 + 0

Pıı(x) = a . n . (n – 1)xn–2 + b . m(m –1).xm–2 dir.





P(x) polinomunun (x – a) ile bölümünden elde edilen bölüm Q(x) ve kalan k1, Q(x) polinomunun (x – b) ile bölümünden kalan k2 ise,

P(x) in (x – a) (x – b) ile bölümünden kalanK(x) = (x – a) k2 + k1 olur.



G. BASİT KESİRLERE AYIRMA

a, b, c, d, e, f A, B birer reel (gerçel) sayı olmak üzere,

POLİNOMLAR Poli_kesir08

eşitliğinde A yı bulmak için, A nın paydasının kökü bulunur.

POLİNOMLAR Poli_kesir09

Bulunan bu değer eşitliğin sol yanında A nın paydası atılarak elde edilen POLİNOMLAR Poli_kesir10 de yazılır.



Aynı işlemler B için de yapılır. Buna göre,


POLİNOMLAR Poli_kesir11



H. DERECE İLE İLGİLİ İŞLEMLER

m > n olmak üzere,

der[P(x)] = m

der[Q(x)] = n olsun.

Buna göre,

1) der[P(x) ± Q(x)] = m dir.

2) der[P(x) . Q(x)] = m + n dir.

3) P(x) in Q(x) ile bölümünden elde edilen bölüm polinomu B(x) ise, der[B(x)] = m – n dir.

4) k Î N+ için der[Pk(x)] = k . m dir.

5) der[P(kx)] = m, k ¹ 0 dır.
Sayfa başına dön Aşağa gitmek
https://dersnotum.forum.st
 
POLİNOMLAR
Sayfa başına dön 
1 sayfadaki 1 sayfası

Bu forumun müsaadesi var:Bu forumdaki mesajlara cevap veremezsiniz
Öss Hazırlık,Ders Notları,Türkçe,Matmatik,Fizik,Test :: |Ortak Dersler| :: Matematik1-
Buraya geçin: